Moselio Schaechter

  • The purpose of this blog is to share my appreciation for the width and depth of the microbial activities on this planet. I will emphasize the unusual and the unexpected phenomena for which I have a special fascination... (more)

    For the memoirs of my first 21 years of life, click here.

Associate Bloggers

  • (Click photo for more information.)

Bloggers Emeriti

  • (Click photo for more information.)

Meetings & Sponsors

« Bacterial History Found in Ancient Mud Scrolls | Main | A New Game for a New Year »

January 03, 2011

Precious Metals

by Elio

Life should be like the precious metals, weigh much in little bulk 

                                    Seneca (Roman philosopher, mid-1st century AD)


One size might not fit all. Source.

Now that news of the arsenic-eating bacteria has saturated cyberspace, the airwaves, and even old-fashioned newsprint, we step back to raise a larger question: Why have so few elements from the periodic table made it into living things? You seldom hear about anything past the first few rows in the table. Turns out this is a gross oversight. Many more elements, previously unsuspected, are to be found in a large number of metalloproteins. So, move over, arsenic and make room for other elements.



Until recently, the topic of metal ion cofactors and metalloproteins has been something of a biochemical stepchild. For sure, some researchers have avidly pursed it. However, in most cases, the presence of metal was revealed serendipitously after the protein was purified. But what if one set out to cast a wide net for metalloproteins? The authors of a recent paper did just that by examining the proteins of the archaeon Pyrococcus furiosus (a super-hyperthermophile that the authors call “a prototypical microbe,” an interesting point of view that we salute). They found several hundred such proteins containing an unexpected assortment of metals. Analysis of two additional organisms, Escherichia coli and Sulfolobus solfataricus, revealed the species-specific assimilation of yet more unexpected metals—cadmium, arsenic(!), uranium, and nickel in E. coli, and both tin and antimony in S. solfataricus.

To ensure that the metals were not contaminants, the researchers went to great lengths, including purifying proteins by a combination of chromatographic techniques. They then used a fancy and highly-sensitive type of mass spectrometry called inductively coupled plasma mass spectrometry to determine the metal content of the proteins. Together these techniques allowed for much faster and more precise identification of metalloproteins than had been previously possible. Even the existing bioinformatics program called InterPro-Metal had turned out to be of only limited help.


One-third of all proteins are "metallo-
proteins," chemical combinations of protein
atoms (carbon, nitrogen, oxygen, hydrogen,
sulfur) with ions of metals such as iron,
calcium, copper, and zinc. Source.

Using these techniques to characterize the chromatographically-purified proteins of P. furiosus they found 343 metal peaks among their protein fractions, 158 of which did not match any known metalloprotein. Some of these unassigned peaks contained metals known to be present in proteins of this organism (e.g., cobalt, iron, nickel, tungsten, and zinc in about half of the peaks) while others possessed unsuspected metals (e.g., lead, manganese, molybdenum, uranium, and vanadium in most of the other half of the peaks). In total, the authors found that this organism contains 21 of the 53 metals analyzed. Most abundant were metalloproteins containing iron and zinc (97% of the total). Note that no extra metals had been added to the growth medium but they were surely present in trace amounts. Taking a page from the recent report on arsenic usage by a bacteria, growing the organisms in increasing amounts of these metals may lead to interesting results. With elementary attention to elemental analysis and interpretation, this should not lead to controversy.

Why should we care that these proteins contain unexpected metals? The authors illustrate several reasons, such as the finding of zinc and iron-sulfur in DNA repair proteins that are relevant to human cancers and the observation that proteins made by recombinant technology may be lacking essential metals. One can add much to this list. But the message is a general one: there is much more to the world of metalloproteins than we had envisaged.

Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL 2nd, Jenney FE Jr, Lancaster WA, Praissman JL, Shanmukh S, Vaccaro BJ, Trauger SA, Kalisiak E, Apon JV, Siuzdak G, Yannone SM, Tainer JA, & Adams MW (2010). Microbial metalloproteomes are largely uncharacterized. Nature, 466 (7307), 779-82 PMID: 20639861


Hi Elio:

Thanks for bringing this neglected but important area
to our attention.

S. Marvin Friedman

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been saved. Comments are moderated and will not appear until approved by the author. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Comments are moderated, and will not appear until the author has approved them.

Teachers' Corner


How to Interact with This Blog

  • We welcome readers to answer queries and comment on our musings. To leave a comment or view others, remarks, click the "Comments" link in red following each blog post. We also occasionally publish guest blog posts from microbiologists, students, and others with a relevant story to share. If you are interested in authoring an article, please email us at elios179 at gmail dot com.

Subscribe via email



MicrobeWorld News